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One-dimensional directed driven stochastic flow with competing nonlocal and local hopping events has an
instability threshold from a populated phase into an empty-road �ER� phase. We implement this in the context
of the asymmetric exclusion process. The nonlocal skids promote strong clustering in the stationary populated
phase. Such clusters drive the dynamic phase transition and determine its scaling properties. We numerically
establish that the instability transition into the ER phase is second order in the regime where the entry point
reservoir controls the current and first order in the regime where the bulk is in control. The first-order transition
originates from a turnabout of the cluster drift velocity. At the critical line, the current remains analytic, the
road density vanishes linearly, and fluctuations scale as uncorrelated noise. A self-consistent cluster dynamics
analysis explains why these scaling properties remain that simple.
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I. INTRODUCTION

Driven stochastic diffusive flow of particles in narrow
channels is widely used as a prototype process to study dy-
namic scaling. The central interests in such processes reside
with the structure of nonequilibrium stationary �NES� states,
the dynamical pathways to those NES states, and the scaling
properties of dynamic phase transitions. Driven stochastic
processes often undergo dynamic phase transitions inside
their NES states as a function of control parameters. This is
true even in one dimension where equilibrium phase transi-
tions are forbidden. One-dimensional �1D� processes serve
thus as ideal platforms to unearth novel general principles
affecting the dynamic scaling properties and the structure of
NES state distributions. The maximum entropy principle fa-
miliar from thermal equilibrium, leading to the Gibbs distri-
bution, does not apply to driven systems. We need to formu-
late new principles, if possible, to predict the structures of
NES states �1,2�. Such principles can emerge from the study
of a wide array of specific processes, in particular using nu-
merical simulations and/or exact solutions.

In this paper, we address how clustering induced by non-
local stick-slip events affects 1D driven stochastic diffusive
flow. Our model is a generalization of the conventional
asymmetric exclusion process �ASEP� �3,4�. We allow non-
local forward hopping events across empty stretches of road,
which introduces an instability toward an “empty-road” �ER�
phase.

Clustering and queuing have been studied recently in dif-
ferent generalizations of ASEP. In the conventional ASEP,
particles hop stochastically in a preferred direction along a
loop, without being able to pass each other and with the
occupation of each site limited to one. That ASEP stationary
state is surprisingly trivial, completely disordered. However,
it is very sensitive to defects and boundary conditions. The
sensitivity to reservoirs in open boundary type setups was
discovered first. In that setup the stationary state is known
exactly by the so-called matrix product ansatz �2,4�. The two
reservoirs at the edges of the channel compete with the bulk

for control over the bulk density � and the average flow rate.
This gives rise to phase transitions between bulk- and
reservoir-controlled phases. The latter can be viewed as el-
ementary forms of queuing �traffic jams�. The density pro-
files near reservoirs have exponential or power-law tails. The
scaling properties remain rather simple and are qualitatively
understood from the fact that the ASEP bulk stationary state
is fully uncorrelated, while fluctuations spread as l� t1/z with
z=3/2, and travel with group velocity vg=1−2� �see e.g.,
Ref. �5��.

Introducing bulk impurities to the ASEP, e.g., a single
slow bond in the bulk, represents the next level of complex-
ity in queuing. Such a single static defect creates more intri-
cate types of jamming than edges, because, unlike reservoirs,
information and correlations can travel across the obstacle.
Recently we demonstrated that the scaling properties of the
slow-bond queuing transition are nontrivial. We established
the existence of an intermediate phase with a pure power-
law-shaped queue, and showed that the transition into the
macroscopic jammed phase does not take place until a finite
strength of the obstruction �6,7�.

A next step in the queuing and clustering saga is to allow
such impurities to be mobile and participate in the dynamics.
Macroscopic clustering represents jamming. For example, in
the two-species process by Arndt et al. �8�, particles of op-
posite charge hop in opposite directions and the passing of
species creates jamming. The stationary states of such pro-
cesses show strong clustering. The possibility of phase sepa-
ration into macroscopic clustered states is discussed at length
in the literature both numerically �9� and analytically �10�, as
well as the link to the zero-range process �ZRP� �11�.

In this paper, we study queuing caused by a different
mechanism. In our generalization of the ASEP, clustering is
induced by nonlocal hopping events. A particle can jump
with probability 1− p to the nearest-neighbor site �if empty�
or with probability p all the way forward to the site imme-
diately behind the particle in front of it. We use open bound-
ary conditions with reservoirs at both edges. Starting off as
uniform at p=0, the stationary state becomes increasingly
lumpy with well-defined clusters as p increases. Then, at a
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critical value pc, this clustered liquid becomes unstable and
the road empties out. The location and the nature of this
phase transition are our main concerns. The transition turns
out to be discontinuous or critical. Clustering and coarsening
prove to be essential in explaining both.

Clustering is quite common in driven stochastic flow. It
appeared, for example, in the two-species-type process of
Arndt et al. �8�. Those clusters were successfully described
by the ZRP �11�, which have zero drift. In our process, the
nonlocality induces clustering with nonzero drift. More im-
portantly, that aspect induces first- and second-order phase
transitions, and the scaling properties of those are governed
by the clustering.

This process and its phase transitions also relate to vari-
ous viscous and/or dissipative stick-slip-type phenomena,
where the particle number is the only locally conserved vari-
able. Potential applications include traffic and/or granular
flow �12�, the motion of stick and flow in sandpiles �13�,
phase separation in steady sedimentation of colloidal crystals
�14,15�, electronic and/or molecular transport in nanoscale
systems �16�, phase ordering in rough films �17�, the motion
of molecular motors driven by ATP �18�, the motion of a
depinned flux lattice in a current-carrying superconductor
�19�, and so on. Nonlocal hopping can be used to mimic the
dynamic features associated with, e.g., the competition be-
tween maximum and minimum speed or drift in traffic or
granular flow, inertia of falling grains inside avalanche pro-
cesses in sandpiles, and the role of gravity in dynamic and
static sedimentation.

This paper is organized as follows. In Sec. II, we present
numerical results for the phase diagram, clustering, and na-
ture of the phase transitions. In Sec. III, we set up a self-
consistent free cluster analysis, in which the stationary state
is described in terms of a collection of freely drifting clus-
ters, i.e., self-organized mesoscopic collective objects that
absorb and emit individual particles constantly. The first-
order segment of the phase transition line is explained as the
result of a turnabout in the drift velocity of those free clus-
ters. The critical segment of the transition line is caused by
starvation, and the fluctuations in the density near the entry
reservoir become crucial. To describe this, we extend in Sec.
IV the self-consistent cluster analysis to the mother cluster,
which is the cluster attached to the entry point reservoir. This
analysis explains the numerical details of the critical transi-
tion presented in Sec. V and discussed in Sec. VI. The paper
concludes, in Sec. VII, with a brief summary of the results
and some open questions.

Our self-consistent cluster approximations resemble re-
cent zero-range process treatments of clustering phenomena,
e.g., in the ASEP with two or more species of particles
�driven in opposite directions� �10�. Our approach is both
more basic and more general. In those processes the clusters
are stationary on average, while ours have a nonzero drift
velocity. In the ZRP approach the internal structure of the
clusters is ignored, while in our approach the internal density
profile is taken into account. Both aspects are essential for
the transition into the ER phase. The ZRP can be solved
exactly, while our discussion remains more approximate.

II. PHASE DIAGRAM

Consider a chain of length 1�x�L with sites that can
only be empty or occupied, nx=0,1. The chain is open, in
contact with the entry side reservoir at x=0 and the exit side
reservoir at x=L+1. The updated rule for our process is as
follows.

�1� Select a site, 0�x�L, at random.
�2� If x�0 and it is occupied, the particle slides to its

nearest-neighbor site x+1 �with probability 1− p� or detaches
and jumps all the way to the empty site directly behind the
nearest particle in front of it �with probability p�.

�3� In case the chain is completely empty in front of the
particle, the particle jumps all the way forward into the exit
side reservoir.

�4� If the entry side reservoir, x=0, is selected and site
x=1 is empty, a particle jumps onto site x=1 with probability
�. Nonlocal hopping events from the reservoir are not al-
lowed in our setup.

Figure 1 shows the phase diagram obtained from our
Monte Carlo simulations with road lengths up to L=16 000.
At p=0 the process reduces to the conventional ASEP.
There, the stationary state is well known to be in either the
input reservoir-controlled phase �C� for ��

1
2 , where the

bulk density is set and limited by the influx fugacity �; or the
bulk-controlled phase �MC� for ��

1
2 , where the influx rate

is no longer the limiting factor and the bulk density is set by
maximizing the bulk current.

The C and MC phases persist into p�0, but become in-
creasingly clustered �see Fig. 2�. Their historical names be-
come quite unfortunate. “MC phase” stands in the conven-
tional ASEP context for “maximal current phase.” Control
over the current, by either the bulk or the reservoir, is closely
linked at p=0 with the so-called maximal current principle.
The latter has been proposed as a general principle to predict
dynamic stationary states. Its success in the conventional
ASEP is closely tied to the stationary state being uniform and
clusterless, and well approximated by mean-field �MF�
theory. The maximal current principle arose naturally as a
reformulation of the MF iteration process. Its generalization
to strongly clustered states remains unclear, and this issue
plays an important role in the discussion below.

“Bulk in control” and “reservoir controlled” would be bet-
ter names for the two phases in Fig. 2, but we avoid confu-
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FIG. 1. �Color online� �-p phase diagram from our
numerics.
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sion by preserving their historical abbreviations MC �the-
middle-in-control phase� and C �being-controlled phase�. In
the C phase, the stationary-state current varies with both p
and �, while in the MC phase it varies only with p regardless
of boundary conditions, i.e., it is � independent; see Fig. 3.
This feature distinguishes the two phases in our numerical
analysis.

For strong nonlocal hopping �large p�, the stationary state
transforms into an empty-road phase. The transition line
starts at small � as a critical line, located just below p=�. It
levels off for increasing �, and changes at the critical end
point, at �=0.64�1�, into a first-order transition line. The
latter is a strictly horizontal line, with pc=0.300�2� �see Fig.
1�. The density of particles �r jumps to zero at the first-order
line �see Fig. 4�, but the average current remains continuous
�see Figs. 3 and 5�.

The road is not truly empty in the ER phase. The average
bulk density vanishes, but typically a finite cluster of par-
ticles “hangs” still from the entry side reservoir near x=1,
and some isolated clusters and individual particles are trav-

eling through the bulk. Figures 6 and 7 illustrate this. They
show the evolution of the probability distribution for finding
Nr=�rL particles on the road across the first-order transition,
at �=0.75, and across the critical line, at �=0.2. Note the
gradual evolution of the distribution across pc at �=0.2 ver-
sus the abrupt change at �=0.75.

Consider the average current through a bulk bond be-
tween x and x+1,

�Jx+1/2� = �nxvx+1� + p�vxvx+1� − pP0�x + 1� , �1�

and through the edge bonds

�J1/2� = ��v1�, �JL+1/2� = �nL� + p�vL� − pP0�L� , �2�

where nx is the occupation operator at site x, and vx�1−nx is
the vacancy operator. Equation �1� states that the current
through the bulk bond is zero if site x+1 is occupied; equal
to 1 if site x+1 is empty while x is occupied; and equal to p
if both sites are empty, provided at least one particle exists
on the road somewhere to the left of x+1. The latter requires

(a)

= 0 0 1 0 15 0 2 0 25 0 3p . . . . .

(b)

= 0 0 1 0 2 0 3 0 4 0 5p . . . . .

FIG. 2. �Color online� Spatiotemporal density profiles for L=256 �1�x� running horizontally from left to right� up to t=512 �0� t�
running vertically from top to bottom� illustrating clustering in both �a� ��	0.25: pc	0.19� the C and �b� ��	1.0: pc	0.30� the MC
phase. Initial conditions include one compact free cluster in the middle of the system to show clearly that the drift velocity of the free clusters
turns around at p	0.3.
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the introduction of the vacancy string operator

P0�x� =
�
y=1

x

vy� , �3�

which counts the probability of the entire road to the left of
x+1 being empty. P0�L� acts as an order parameter, which
vanishes in the C and MC phases, but remains nonzero
across the entire chain in the ER phase. P0�x� is always non-
zero near the entrance at small x.

The qualitative structure of the phase diagram is now eas-
ily understood. In the stationary state, the average current is
constant throughout the system, and Eq. �2� implies the iden-
tity

��v1� = 1 − �1 − p��vL� − pP0�L� . �4�

This excludes the C and MC phases from extending into the
p�� region of the phase diagram. The identity cannot be
satisfied for p�� with P0�L�=0; the right-hand side varies

between p and 1, because 0�vL�1, and that is inconsistent
with 0�v1�1 for p��.

Equation �2� also implies that the current along the entire
transition line is equal to J= pc���; because at pc, �vL� is
already equal to 1, while P0�L� is still equal to zero. Our
numerical simulations confirm this.

The leveling off of the transition line into a horizontal
�constant p� segment is linked to this as well. As a start, we
consider MF theory. In the MC phase, where the bulk con-
trols the current, Eq. �1� is then approximated as J=vb− �1
− p�vb

2 where vb is the vacancy density deep inside the bulk.
The maximum current representation of MF theory, �J /�vb
=0, yields, vb=1/2r and J=1/4r, with r=1− p. This together
with the condition J�pc�= pc puts the MC-ER transition line
at p=1/2.

This is only an upper limit to its true location. The clus-
tering in the MC phase, shown in Fig. 2, is not represented in
MF theory. It underestimates the number of nearest-neighbor
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FIG. 3. �Color online� Steady-state current J versus p for L
=8000 at fixed �=0.1,0.15, . . . ,1 from bottom to top �with the
same � labelling as in Fig. 4�.
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FIG. 4. �Color online� Steady-state bulk road particle density �r

versus p at fixed �=0.1,0.15, . . . ,1.0 for L=8000.
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FIG. 5. �Color online� J-p versus p at fixed �
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J-p=0 line represent the C-ER and the MC-ER phase transition
points.
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FIG. 6. �Color online� Probability distribution P�Nr� for finding
Nr particles on the road, at �=0.75 for various p
=0.295,0.296, . . . ,0.303 �from right to left� at L=8000. The
MC-ER transition occurs at pc
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pairs. These pairs shift the transition line downward �see Eq.
�1��. More advanced versions of MF theory incorporate local
correlations but still fail to account for clustering. Instead,
we develop in the following section a self-consistent cluster
approach. It predicts the correct location of the MC-ER tran-
sition line, and, more importantly, it provides insight in the
mechanism that makes the MC-ER transition discontinuous.

We note that a closed chain �with periodic boundary con-
ditions� does not include the ER phase due to conservation of
the total number of particles and holes in such a setup. A
similar model was studied in the context of the mass-
conserving coalescence process, the so-called mass-chipping
model �20,21� with and without a bias. Implications of our
results in this context will be discussed elsewhere �22�.

III. FREE CLUSTER ANALYSIS

Adopt the point of view where the C and MC type sta-
tionary state configurations are fully clustered, with one dis-
tinct “mother cluster” attached to the entry reservoir at small
x and many disconnected freely drifting clusters in the bulk.
These clusters are meant to be only mesoscopic in size, be-
cause true phase separation in terms of macroscopic high-
density �clusters� and low-density sections is not realized in
this process �see Fig. 2�.

Assume the bulk clusters are compact nonfractal mesos-
copic objects with average bulk density �c and local average
densities �F and �R at the front xF and rear xR ends, respec-
tively. The front moves forward by creep �local hops, xF
→xF+1� and backward by detachment of the front particle
by a nonlocal hop to the next cluster, with velocity

uF =
�xF

�t
= �1 − p� − p/�F. �5�

The rear moves by local forward hops �internal nonlocal
hops are suppressed by the high particle density inside the
clusters� and by attachment of a new particle due to a non-
local hop from the free cluster behind it,

uR =
�xR

�t
= �1 − �R� − p . �6�

The drift velocity ud of the cluster is associated with its cen-
ter of mass;

ud =
1

2
�uF + uR� = 1 − p −

1

2
�R −

1

2
p/�F. �7�

A cluster maintains its integrity only if its internal bulk den-
sity �c is stationary. The number of particles in the cluster,
Nc, is determined by nonlocal hops at its two ends, and is
thus on average constant in time, �Nc /�t	−p+ p=0. A sta-
tionary internal density �c requires therefore that the average
cluster length �=xF−xR be invariant. Equations �5� and �6�
then relate the front and rear densities as

�R�F = p . �8�

Inserting reasonable values for the densities yield immedi-
ately that ud changes sign as p increases, and does so before
the MF estimate of pc. For example, �F=1/2 implies that the
drift velocity changes sign at pc=1/3; and also that �R
=2/3, large enough to validate the cluster concept self-
consistently.

This turnabout of the drift velocity of the clusters explains
the first-order nature of the MC-ER transition. Any initial
configuration decays �after forming clusters� to an empty
road for ud�0, because all bulk clusters travel backward and
fall back into the entry point reservoir. This change in drift
velocity is clearly visible in the density profile time evolu-
tions of Fig. 2.

Emboldened by this success, we dare to push the self-
consistent cluster analysis further. We need to relate the
above equations to the free cluster current Jc and bulk den-
sity �c to obtain a closed set of equations. To determine the
free cluster properties throughout the C and MC phases, and
also estimate the value of pc.

Visualize each cluster as a separate conventional ASEP,
i.e., the absence of significant numbers of internal nonlocal
hopping events due to the high local internal density. In the
conventional ASEP the density probability distribution deep
inside the bulk is spatially uncorrelated. It is safe to presume
the same is true inside the clusters. This yields

Jc = �1 − rvc�vc, �9�

with r=1− p. The cluster acts like an individual ASEP with
open boundary conditions in a somewhat unusual setup: It
has a fluctuating “lattice size” � and a fixed injected current
p, instead of a fixed lattice size and a fluctuating injection
current �controlled by a fugacity like ��. The total current
inside a cluster is equal to the injection current plus the con-
tribution of the center of mass drift as

Jc = p + �cud. �10�

Jc and �c should not be confused with the global current and
density. They only coincide with those at the transition point
ud=0. Equation �10� reproduces correctly the exact result
that J= pc at the transition.

Equations �7�–�10� provide still only four conditions be-
tween five variables: the cluster current Jc, the drift velocity
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FIG. 7. �Color online� Probability distribution P�Nr� for finding
Nr particles on the road, at �=0.2 for various p
=0.154,0.156, . . . ,0.164 �from right to left� at L=8000. The C-ER
transition occurs at pc
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ud, and the rear, bulk, and front densities ��R, �c, and �F�.
Typically �at a given value for p�, a set of possible solutions
can be found. Let us parametrize them by their values for Jc.
We use the maximal current principle to close the equations
and select the correct value of Jc from the set. The justifica-
tion of this is again based on the conventional ASEP, where
the exact matrix method solution as well as the MF approxi-
mation have this property �4�. A secondary feature of the
conventional ASEP is also preserved, that the stationary state
density profile is always uniformly decreasing, �R	�c	�F.

This procedure leads to two distinct types of free cluster
solutions as a function of p: a “front-limited” �F� state �with
�c=�F� at p� ps; and a “maximum current” �MC� state �with
�J /�vc=0� at p� ps. The crossover takes place at ps= 1

4 �3
−�5�=0.191.

The MC free cluster solution at p� ps resembles very
closely and smoothly connects to the p=0 global MC state. It
has internal vacancy density vc=1/2r, cluster current Jc
=14r, drift velocity ud=r−1/2, and edge densities �F=2p
and �R=1/2. However, we cannot take the MC free cluster
solution seriously at small p, because the internal cluster
density becomes too small for the cluster concept to remain
meaningful. Instead, we interpret ps as marking the onset of
crossover toward the nonclustered MC stationary state at p
=0.

The F solution with �c=�F, maximizes the internal current
inside the cluster for p� ps. The cluster density is equal to

�c =
1

2�1 − p�
��4p − 3p2 − p� . �11�

The rear density �R= p /�c is larger than �c=�F in the entire
interval ps� p� pc, reflecting a uniformly decreasing density
profile �required for internal stability�.

These F solutions tell us that inside the MC phase �bulk-
in-control phase� of Fig. 1, near pc, the configurations are
clustered and that each of these free clusters is limited and
controlled by its front. Inserting �c=�F from Eq. �11� into
Eq. �5� yields ud=0 at pc=1/3. This estimate for the first-
order transition line is remarkably close to our numerical
results, pc	0.30.

IV. MOTHER CLUSTER ANALYSIS

We now turn our attention to the critical line between the
C and ER phases. This transition is dominated by the fluc-
tuations near x=1. Therefore, we extend the self-consistent
cluster analysis to the mother cluster, i.e., the cluster attached
to the entry point reservoir. This analysis explains the scaling
properties of the second-order transition, as determined nu-
merically and presented in the following sections.

The mother cluster is presumed to be a mesoscopic object,
connected to the entry side reservoir. It governs the bulk
current in the C phase, while being controlled itself by the
reservoir. The mother cluster acts like a p=0 ASEP with a
fluctuating front, i.e., with a fluctuating length. The injection
current from the reservoir in its rear is equal to Jc=�v1, with
vx=1−�x as before. The bulk density of the mother cluster
can be presumed to be uncorrelated again, Eq. �9�. The evo-

lution of its front at xF obeys Eq. �5�. An amount p of the
current through the cluster flows away at the front of the
cluster by nonlocal hops, and the remainder extends the clus-
ter forward:

Jc = p + �cuF = p + �c��1 − p� − p/�F� . �12�

This set of equations is still incomplete. It ignores the prob-
ability P0�x� that all sites to the left of a specific site x are
empty �see Eq. �1��. In the free cluster analysis this played no
role �P0�x�=0� because another particle can always be found
to the left of the free cluster as long as the mother cluster
exists and remains mesoscopic. The mother cluster current is
very sensitive to the density profile near the reservoir, and
thus to P0�x�.

The mother cluster density profile can be presumed �self-
consistently� to be sufficiently uniform that we can apply
mean-field theory internally,

vx+1 = Jc/�1 − rvx − pP0�x�� , �13�

P0�x� = vxP0�x − 1� . �14�

Compare this with Eq. �1�. MF theory for the conventional
ASEP gives erroneous power-law and exponential density
profile tails. Similarly, the following analysis can be at best
only qualitatively correct.

Solutions are found by solving the above equations itera-
tively and by finding the value of Jc that satisfies the bound-
ary conditions at both the rear and front. It is important to
realize that the solution is unique for “finite” cluster lengths
�c. The mother clusters are finite in length, but we analyze
them as if they are mesoscopic and effectively infinitely
long. For infinite cluster lengths, the equations typically al-
low a range of Jc with possible solutions. The maximum
current solution is the correct one, because it coincides with
the �c→
 limit of the unique finite length solution.

At �c=
, the construction of a solution involves the
matching of two iteration processes: the forward iteration,
x→x+1, starting from the rear of the cluster and the back-
ward iteration, x→x−1, starting from the front of the cluster.
It is useful to sketch briefly some of the details of this. The
iteration process has two bulk densities as possible fixed
points, determined by the roots of the quadratic equation Jc
=vc�1−rvc� �using that P0→0 in the bulk of the mother
cluster�. The low-density fixed point vc

�l� is unstable and the
high-density fixed point vc

�h� is stable in the forward iteration
process. They reverse roles in the backward iteration process.

For a given value of Jc, the forward iteration process
starts at site x=1 with density v1=Jc /�, and typically iterates
toward vc

�h� �see Fig. 8�. The backward iteration process starts
at site x=xF with density vF prescribed by Eq. �12�, and
typically converges toward vc

�l�. Those solutions do not
match, unless the current is raised to the value where the two
fixed points coincide. This matching is equivalent to �and the
origin of� the maximal current principle. This type of solu-
tion, where the two fixed points merge, applies to the bulk-
controlled MC state. It exists when the starting densities of
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the forward and backward iteration processes are located in-
side the attraction domain of the vc

�h� and vc
�l� fixed points,

respectively.
This fails in the front- and rear-controlled F- and R-type

states. In the F states, the starting point of the backward
iteration process, the value vF, crosses over to the unstable
side vF�vc

�h� of the vc
�h� fixed point, while we raise the cur-

rent. In that case Jc must be chosen such that those two
densities match, vF=vc

�h�. The density profile at the front is
thus flat. The rear profile is typically able to iterate forward
toward this fixed point vc

�h�, and thus match the backward
iteration. �This solution still maximizes the current, in the
boundary-limited sense.�

In the rear-controlled �R� states, the roles of the forward
and backward iteration processes are reversed, i.e., the for-
ward iteration process crosses over to the wrong side of the
vc

�l� fixed point. This requires more care than the F state,
because the initial value v1=J /� needs to be iterated forward
into the region x	 lp where P0�x� becomes negligible, before
it becomes clear where this profile “lands” compared to the
low-density fixed point vc

�l�. The latter is the reason why we
need to bother with the iteration process for the mother clus-
ter, while for the free clusters it suffices to write down the
boundary and bulk conditions, and use the maximal current
principle formulation of the matching process.

Figure 9 shows the mother cluster states as a function of �
and p. The MC �bulk-controlled� and F �front-controlled�

states are basically identical to the free cluster states dis-
cussed in the earlier section. This confirms the stability of the
MC clustered phase at large �. In these states the front or
bulk of the mother cluster is in control, setting Jc, and at the
rear the reservoir is able to supply the requested current with-
out letting the mother cluster detach. The F state can be
divided into two states, F up and F down, distinguishing
between whether the forward iteration process approaches
vc

�h� from below or above �see Figs. 8 and 9�. In the free
cluster analysis only F down is present. Due to the presence
of P0�x�, the mother cluster is not required to be uniformly
decreasing any more.

These F and MC solutions describe mesoscopic mother
clusters. The growth velocity �drift velocity of the front� uF
is positive. Strictly speaking the mother cluster could keep
growing until it fills the entire chain, but that would lead to
the uniform MF-type nonclustered state along the entire
chain. In reality, density fluctuations make the mother cluster
break apart regularly, emitting free clusters.

The transition into the R states at small � takes place
when the front �F state� or bulk �MC state� imposed value of
Jc can no longer be satisfied at small x. From there on, the
rear takes over as the limiting factor, and the front end of the
profile is required to follow instead. This is the origin of the
starvation process responsible for the second-order transition
line.

The mother cluster front can only follow the rear at small
p, denoted in Fig. 9 as the R-up and R-down states. The
current Jc must be tuned such that the forward iteration pro-
cess lands exactly onto the low-density fixed point vc

�l�. In the
R-up and R-down states, the backward iteration process,
starts at a vF inside the attraction basin of the low-density
fixed point, and therefore the backward iteration process is
able to converge.

The R-up state has an increasing density profile in the
front, where P0=0, and is therefore dynamically unstable.
Moreover, the bulk densities in both the R-up and R-down
states are very small, just as in the MC state, and self-
inconsistent with the cluster concept. The mother cluster
density profile starts high at x=1, but decays to the small
unstable fixed point value beyond x= lp. Such clusters must
be unstable to internal clustering fluctuations and break up
regularly into a small lp-sized object.
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FIG. 8. �Color online� Forward iteration processes.
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Everywhere near the second-order transition line, in the
area marked as R in Fig. 9, the backward iteration process
fails because vF starts at a vF�vc

�h� outside the attraction
basin of vc

�l�. The forward and backward iterations can not be
matched anymore. A true R-type mother cluster solution
seizes to exist. The front of the mother cluster can not be in
a locally stable stationary type forward creeping state any-
more.

This inability to construct a stable R cluster front near the
second-order transition line in Fig. 1, leaves no other options
than to toss out the mother cluster front conditions, Eq. �12�,
and redefine the mother cluster as a quasistationary R-type
object �typically short, except very close to the second-order
transition line� defined by the half-space forward iteration
process only, with Jc the precise value of the cluster current
that let v1=� /Jc iterate into vc

�l�. The mother cluster size is
set by the length scale lp where P0�x�→0 and the density
becomes small. lp is now the onset of a turbulent low-density
region where the formation of new free clusters takes place
continuously without any “local stationary state order” or
stability.

Next, we face the problem that we lost our �maximum
current� justification for why Jc must settle on that special
value where the forward iteration process converges into the
unstable fixed point. Nevertheless, it is arguably the dynami-
cally stable choice in the following sense. Consider the half-
space solutions with smaller values of Jc. Their forward it-
eration process converges into the stable high-density fixed
point. Those clusters would have a pronounced dip in their
density profile near lp �when the iteration process comes near
the vc

�l� fixed point� before increasing towards the large den-
sity value of the vc

�h� fixed point. Such structures are unstable
and tend to shrink. They resemble mother clusters in the
process of pinching off a free cluster. The breaking-up event
shrinks the mother cluster toward lp. Moreover, the breakup
also increases the current of the combined two objects. Half-
space solutions with values of Jc larger than the special
choice make the iteration process crash almost immediately
through zero density, and can be interpreted as representing
very short mother clusters. Those are also unstable and tend
to grow. The empty space in front of such a short cluster can
carry away still only a current of order p, while Jc has in-
creased. Moreover, it is less successful in breaking up be-
cause P0�x� is not small at its front, and therefore the free
cluster immediately in front of it is subject to a fluctuating
injection current, larger on average than p, and thus with a
significantly smaller or even negative drift velocity.

The C-MC phase boundary is represented in the mother
cluster analysis as the threshold �see Fig. 9�, between the R
states and the MC and F states. This reproduces the true
location �from our numerical simulations� not too well. It has
a kink instead of being smooth. The reason for this is likely
that the mother cluster is very short in the R states and badly
approximated by the mesoscopic description.

The C-ER critical line is represented in the mother cluster
analysis as the line where the R-state solution iterates to zero
density. This estimate virtually coincides with the true loca-
tion determined from our numerical simulations. This re-
markable accuracy is likely linked to the fact that the mother

cluster length, of order lp, diverges at the transition, and the
mesoscopic approach becomes valid.

The crossover from the horizontal first-order segment of
the transition line to the curved second-order part represents
a critical end point. It is located at exactly pc=1/3 and �
=2/3 in this analysis, and is also close to the true location.
Our numerical simulations locate it at pc	0.300�2� and �
	0.64�1�. The scaling properties of the critical end point
appear numerically not special, and consistent with the no-
tion, emerging from the cluster analysis, that the origins of
the first- and second-order transitions �starvation versus drift-
velocity turnabout� are distinct and unrelated. Their scaling
behaviors are thus simply superimposed onto each other at
the critical end point.

Within our numerical accuracy this critical end point co-
incides with the end point of the C-MC boundary. There is
no a priori reason to expect this coincidence, but in the
mother cluster approach it arises naturally.

V. NUMERICAL RESULTS AT CRITICALITY

In our numerical simulations, we average over 104–105

independent runs up to t=105 Monte Carlo steps for nonsta-
tionary state features. For the stationary state properties we
simulate system sizes L=500�2n with n=1,2 , . . . ,5 and
discard all data before t	L2 or more, to allow the system to
reach the stationary state. We collect data up to t=108–109

Monte Carlo steps and average over 10–200 independent
runs. We monitor the road density �r= �nr� �nr=Nr /L�; the
density fluctuations �2=L��nr

2�− �nr�2�; the Binder cumulant
U4=1− �nr

4� / �3�nr
2�2�; and the current J. The results are

shown in Figs. 10 and 11.
The scaling properties of the C-ER transition are deter-

mined numerically, along several cuts though the transition
line. It suffices to present here the details along one repre-
sentative example, i.e., only the �=0.2 line. The critical
point pc along this line can be determined by standard meth-
ods, from the so-called crossing points or the maximum
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FIG. 10. �Color online� Road density �r versus p at �=0.2 for
various L. The inset illustrates the finite-size behavior of �r at the
C-ER transition point in a log-log plot.
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points in �2 as well as the crossing points in U4. From these
we estimate pc=0.161�1�. As mentioned before, the current
�see Fig. 11� must be equal, J= p, at the transition line. This
is very well satisfied compared to the above estimate for pc.
Turning this around, requiring J�pc�= pc, improves the esti-
mate to pc=0.161 25�5�.

The road density �r vanishes on approach of the transition
point pc from below in the thermodynamic limit, as �r�
�

with 
= pc− p. The density fluctuation �2 diverges at pc from
below as �2�
−� but becomes zero in the ER phase �p
� pc�. The Binder cumulant U4 converges to 2/3 in the C
phase �consistent with a Gaussian distribution� and to −1 in
the ER phase �indicating an exponential distribution�. U4

converges very fast, while �2
�m� shows strong finite-size ef-

fects.
The values of the critical exponents follow by exploiting

conventional finite-size scaling theory,

�r = L−�/�f�
L1/�� ,

�2 = L�/�g�
L1/�� ,

U4 = h�
L1/�� , �15�

where � is the correlation length exponent and f , g, and h are
scaling functions. Elementary scaling laws yield hyperscal-
ing relations such as �2�+�� /�=1.

U4 shows the least finite-size effects. We estimate the
value of � by collapsing the U4 data �see Fig. 12� as 1/�
=0.50�2�. Collapsing the road density data yields �see Fig.
13� � /�=0.48�2� and 1/�=0.53�3�. By plotting the maxi-
mum value of � against L, we can estimate the value of � /�.
A simple power-law fitting yields � /�=0.17�3�, but the data
are also consistent with a logarithmic fit, i.e., �2

�m�� ln L �see
Fig. 14�. Hyperscaling is satisfied only when this logarithmic
divergence is correct, so we are inclined to put more weight
on the logarithmic fitting.

The value of the Binder cumulant U4�pc� is expected to be
universal at the transition. Our numerical estimate U4�pc�
=0.08�3� is very close to zero, which may reflect the half-
Gaussian-like shape of P�Nr ,L� at criticality �see Fig. 7�.

VI. MOTHER AND FREE CLUSTER SEPARATION

The numerical data point to rather simple values of the
critical exponents at the C-ER transition, �=1 and �=2. The
R-state mother cluster properties explain why the scaling is
that simple. The first and most crucial observation is the lack
of any feature in the current J�p ,�� across the critical line in
our numerical data, Figs. 5 and 11. The global current ap-
pears to be analytic, and totally unaffected by the presence of
the C-ER transition, moving linearly through the critical
value J= p, as J− p	A�p− pc�.

The mother cluster sets the global average current. Its
offspring, the free clusters, cannot influence this, unable to
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communicate in the backward direction, being distinct ob-
jects with positive drift velocity. The mother cluster is an
independently fluctuating object, and the rest of the road is
slaved to it. At the C-ER transition, the mother becomes
unable to create free clusters at a sufficient rate to sustain a
nonzero average bulk density �c, but is itself unaffected by
what is going on in the bulk.

The global average current J�� , p� is analytic across the
C-ER transition, because the mother cluster current is ana-
lytic, and the average bulk current is equal to it, because �on
average� the mother cluster remains attached to the reservoir,
and �on average� it does not grow in length �due to the break-
ing off of free clusters�.

The linear vanishing of the bulk density with exponent
�=1 is a direct consequence of this analyticity of J�� , p�.
They are related by the simple equation

J��,p� = p�1 − �r� + �p + �c
�f�ud

�f���r, �16�

�r =
J − p

�c
�f�ud

�f� , �17�

with �c
�f� the internal free cluster bulk density and ud

�f� the
drift velocity �see also Eq. �10��. Consider a specific bond.
The first term on the right-hand side of Eq. �16� represents
the current through this bond from isolated nonlocally hop-
ping particles when this bond is not part of a free cluster. The
second term is the current through the bond when it is part of
a free cluster. The probability for the bond to be part of a free
cluster is equal to �r. The free cluster parameters �c

�f� and ud
�f�

are analytic functions of p only and are set self-consistently
by the free cluster equations. All functions on the right-hand
side of Eq. �17� are analytic; therefore the bulk density van-
ishes linearly, with �=1.

The C-ER transition is a bulk phenomenon induced by the
mother cluster. It lacks therefore independent critical bulk
fluctuations. This explains why �=2. The free clusters gen-
erating breakups in the turbulent region near x= lp behave
like random uncorrelated events; i.e., the fluctuations in the
number of particles injected by the mother cluster into the
bulk behave like uncorrelated noise. In the C phase, those
fluctuations are screened and absorbed by the presence and
formation of free clusters. On approach to the C-ER transi-
tion, free clusters become rare and at the transition they van-
ish altogether. There, the random breakup fluctuations travel
like a pattern across the chain. The time of flight is propor-
tional to the system size. Therefore, the bulk density repre-
sents �biased� random noise averaged over a time propor-
tional to L, and thus scales as �r�L−1/2 at the C-ER
transition.

Two more variables in our numerical data express and
confirm the same uncorrelated fluctuations. At the C-ER
transition, the density profile �no figure included� decays to
zero smoothly near the reservoir, as a power law, �r�x�
�x−�R with �R
1/2, consistent with random noise. In the C
phase, the distribution of the number of particles on the road,
P�Nr�, is a Gaussian centered around the bulk density �r.

Toward the C-ER transition, the maximum shifts toward Nr

O�1� and at the transition decays as a half Gaussian �see
Fig. 7� consistent with uncorrelated noise. In the ER phase,
�r�x� and P�Nr� decay exponentially.

VII. CONCLUSIONS

In this paper, we studied how the inclusion of nonlocal
hopping events affects the stationary state of the ASEP. Clus-
ters develop, but mesoscopic ones. There is no macroscopic
queuing transition. Instead, there is a phase transition toward
an empty-road phase, which is first order from the MC clus-
tered phase �where the bulk is in control� and second order
from the C-type clustered phase �where the entry reservoir
controls the stationary state�. The first-order MC-ER transi-
tion is induced by a reversal of the group velocity of the free
clusters. The C-ER transition has rather simple scaling prop-
erties, reflecting the mother cluster properties near the entry
reservoir and that the bulk �free clusters� do not interact back
on the mother cluster.

One of the remaining issues is the nature of the dynamic
scaling. Generically, fluctuations in the stationary state
broaden in time as l� t1/z. The dynamic scaling in the clus-
tered C and MC phases, is to be expected to remain in the
Kardor-Parisi-Zhang universality class, with z=3/2. Within
each cluster length scale we expect z=3/2 because each
cluster acts like a simple ASEP in its own right. At larger
length scales, the process resembles a driven zero-range pro-
cess with a preferred direction and nonzero group velocity,
which should also have z=3/2 scaling. In our simulations,
we did not focus on the dynamic scaling properties of the C
ad MC phases, but exploratory numerical results for z are
consistent with z=3/2. The dynamic scaling at the C-ER
transition is expected to remain simple as well because that
transition does not involve novel intrinsic bulk fluctuations.

Clustering and its ramifications are surely the main mes-
sage of our study. The conventional ASEP has a uniform
stationary state with rather trivial scaling properties, but is
unstable toward clustering and queuing. Such clustered
states, even when involving only mesoscopic clusters, com-
municate badly with each other, and it is hard for them to
develop to other types of fluctuations. Phase transitions, in-
duced and controlled by those same clusters, therefore have
typically rather simple scaling properties, as at the C-ER and
MC-ER phase boundaries in our process.

It will be interesting to test our self-consistent cluster ap-
proximations on other processes with clustering in cases
where the drift velocity of the clusters is nonzero; for ex-
ample, a variant of the two-species process of Arndt et al. �8�
with different numbers of oppositely moving particles.
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